How Does a PM Program Help Eliminate Component Failures?

Mike Poland, Life Cycle Engineering

In answering the question posed in the headline, we must first define what PM stands for. According to Life Cycle Engineering’s Rx Definitions, this could have one of many meanings.

It could refer to periodic maintenance, planned maintenance, predictive maintenance (although normally abbreviated as PdM) and preventive maintenance. Despite the definition of each and how they differ, they all relate to asset care.

A properly cared-for asset will net much higher utilization at a much lower total cost of ownership. This is accomplished by establishing a program that mitigates or eliminates failure.

Periodic maintenance is the cyclical maintenance actions or component replacements carried out at known regular intervals. Usually intrusive, they are often based on repair history and regulated by current inspection results.

Periodic maintenance includes inspecting, testing, partial dismantling, replacing consumables or complete equipment items, lubricating, cleaning, and other work short of overhaul or renovation. This usually requires equipment to be scheduled out of service and may be done at intermediate intervals, usually ranging from monthly to annually.

Planned maintenance is, by virtue of cost, importance, extensive labor and materials required, etc., planned to ensure, when scheduled, that it can be completed with the least interruption to operations and the most efficient use of maintenance resources.

Predictive maintenance is the use of instruments and analysis to determine equipment condition in order to predict failure before it takes place so corrective maintenance can be done in a planned and scheduled fashion. Examples include vibration analysis, oil analysis, thermography, airborne ultrasonics, non-destructive testing (NDT), motor current signature analysis, trending of process parameters, etc.

Preventive maintenance is time- or cycle-based actions performed to prevent system functional failure. This proactive maintenance type generally includes scheduled restoration and scheduled discard tasks.

To ensure proper asset care, we must first understand our asset’s place in the functional hierarchy and its criticality relating to production process or value stream. This will also yield our lowest maintainable component.

We now have the linkage to work orders, bills of material and reliability analytics. Once this is established, we then must understand the risk of the failures related to this component to determine the type of analysis we will use for developing our control plan to mitigate or eliminate these failures.

This may direct us to a traditional Reliability-Centered Maintenance approach, a simplified failure modes and effects analysis, to follow the manufacturer’s recommended maintenance, or to take no action since the component does not warrant any maintenance strategy due to a low risk ranking. In the event a hidden failure mode is identified for a critical component, a redesign would be required.

Once predominant failure modes are identified, controls must be put in place in the form of tasks. The preventive maintenance tasks must then be developed in the Task or Asset Activity module of the enterprise asset management (EAM) system so that a work order can be generated, planned and scheduled.

In order to be effective, this task must meet the following: 1) based on a predominant failure mode, 2) comprehensive, 3) organized, 4) repeatable, 5) value-added, 6) proper interval, and 7) valid duration.

There also should be a method to identify the skill level and acceptance criteria necessary to accomplish the task. Finally, a business process must exist to provide feedback on the condition of the component, actual duration to accomplish, and reliability analytics in place to validate all of the above.

About the author:
Mike Poland is the director of Life Cycle Engineering’s Asset Management Services. A Certified Maintenance and Reliability Professional (CMRP), Mike has more than 25 years of engineering and maintenance experience. Mike specializes in reliability processes and systems engineering with an emphasis on defect detection and elimination through root cause analysis and risk based inspections. His approach to risk-based asset management and the elimination of limiting factors for clients provides greatly enhanced asset utilization at a much lower total cost of ownership. Mike is also a facilitator with the Life Cycle Institute where he uses high-impact learning techniques to teach courses including Asset Maintenance Plans and Predictive Maintenance Technologies. To learn more, visit or call 843-744-7110.

Subscribe to Machinery Lubrication

About the Author

Mike Poland of Life Cycle Engineering specializes in life cycle asset management with a focus on increasing asset utilization at the lowest total cost of ownership. His expertise is in systems e...